A generalization of zero-divisor graphs

نویسنده

  • Peyman Nasehpour Department of Engineering Science, Golpayegan University of Technology, Golpayegan, Iran
چکیده مقاله:

In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

$C_4$-free zero-divisor graphs

‎In this paper we give a characterization for all commutative‎ ‎rings with $1$ whose zero-divisor graphs are $C_4$-free.‎

متن کامل

on zero-divisor graphs of quotient rings and complemented zero-divisor graphs

for an arbitrary ring $r$, the zero-divisor graph of $r$, denoted by $gamma (r)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $r$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. it is well-known that for any commutative ring $r$, $gamma (r) cong gamma (t(r))$ where $t(r)$ is the (total) quotient ring of $r$. in this...

متن کامل

Zero Divisor Graphs of Posets

In 1988, Beck [10] introduced the notion of coloring of a commutative ring R. Let G be a simple graph whose vertices are the elements of R and two vertices x and y are adjacent if xy = 0. The graph G is known as the zero divisor graph of R. He conjectured that, the chromatic number χ(G) of G is same as the clique number ω(G) of G. In 1993, Anderson and Naseer [1] gave an example of a commutativ...

متن کامل

On quasi-zero divisor graphs of non-commutative rings

Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...

متن کامل

$c_4$-free zero-divisor graphs

‎in this paper we give a characterization for all commutative‎ ‎rings with $1$ whose zero-divisor graphs are $c_4$-free.‎

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 51  شماره 2

صفحات  35- 45

تاریخ انتشار 2019-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023